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Electron-Phonon Interaction and Transport in Semiconducting Carbon Nanotubes
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We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a
tight-binding model. The mobility is derived using a multiband Boltzmann treatment. At high fields, the
dominant scattering is interband scattering by LO phonons corresponding to the corners K of the graphene
Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The
calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced
by a simple interpolation formula. Polaronic binding give a band-gap renormalization of �70 meV, an
order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy
dependent.
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Carbon nanotubes have enabled novel electronic de-
vices, including quasi-one-dimension field-effect transis-
tors [1] and electro-optical devices [2,3]. Much effort has
gone into determining the transport properties, which are
crucial for these and other applications. Nanotubes exhibit
high mobility at low electric fields, exceeding the best
semiconductors at room temperature [4]. At high fields,
the mobility is dramatically reduced by optical phonon
emission, leading to interesting saturation behavior [5–
7]. However, little is known about how the mobility varies
with temperature, electric field, and tube diameter and
chirality.

Here we calculate the electron-phonon interactions and
drift velocity in semiconducting nanotubes, within a stan-
dard tight-binding approach. Our results are consistent
with available measurements, and provide a detailed mi-
croscopic picture of phonon scattering. For example, we
find that there is a broad maximum in coherence length at
intermediate energies, centered at 100–150 meV, with
coherence lengths of over a micron at room temperature,
and much larger at low temperature. At large fields, the
mobility is limited primarily by interband scattering from
the LO phonons corresponding the corners of the graphene
Brillouin zone.

At the same time, we provide a broad overview of the
transport, by calculating the mobility over a wide range of
temperature, electric field, and nanotube structure. The
low-field mobility depends strongly on nanotube diameter
and temperature, while at high field the drift velocity
approaches a roughly universal value. We show that these
dependences can be well described by a simple formula.

In addition, we find that polaronic binding gives a sig-
nificant band-gap renormalization, reducing the gap by
around 70 meV over a range of tube diameters. This is
more than an order of magnitude larger than suggested by
previous calculations [8,9], and is particularly important
for larger-diameter tubes, where it represents a significant
fraction of the band gap.
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Our calculations use a standard tight-binding description
for the electronic structure [10]. The phonons are described
using an improved model somewhat similar to that of
Aizawa et al. [11]. We model the electron-phonon (e-ph)
interaction by the Su-Schrieffer-Heeger (SSH) model [12],
with matrix element t � t0 � g	u dependent on the
change of the nearest neighbor C-C distance (	u), where
t0 � 3 eV. We take the e-ph coupling constant to be g �

5:3 eV= �A [13,14]. The Fourier transformed SSH
Hamiltonian here is

H e�ph �
X
kq�

M�
kq�v

y
k�qvk� uyk�quk��aq� �ay�q��; (1)

where M�
kq / gN�1=2 is the e-ph coupling [15], uyk�q�vk�

denotes creation (annihilation) of an electron in the con-
duction (valence) band, ay�q� is a phonon creation operator
with wave vector �q and phonon band index � � 1 . . . 6,
and N is the number of the primitive unit cells each
containing two carbons. The indices k and q each label
both the continuous wave vector along the tube axis and the
discrete circumferential wave vector.

We consider a single electron in the conduction band;
the behavior of a single hole would be identical. The
charge carrier with wave vector k and energy "k can be
scattered to a state with wave vector k� q by absorbing
(emitting) a phonon with wave vector q ��q�, and having
energy �h!q�� �h!�q� such that the net momentum and
energy are conserved.

The scattering rate for an electron of wave vector k, in
the random phase approximation, is
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where �k is the scattering time, and the phonon occupation
number nq� is given by the Bose-Einstein distribution. The
energy shift due to electron-phonon coupling is

	Ek � Re
X
q�

jM�
kqj

2

� n�q � 1

"k � "k�q � �h!�q� � i	

�
nq

"k � "k�q � �h!q� � i	

�
; (3)

in the limit 	 ! 0.
The results for the binding energy and the scattering rate

of a charge carrier in the first band are shown in Fig. 1 for a
tubes of diameter d � 2:0 nm. The binding energy in
Fig. 1(a) is nearly independent of temperature over the
entire energy range, and only weakly energy dependent
at low energy. The binding energy increases sharply at
resonance with the optical phonon KLO. The scattering
rate (inverse lifetime) in Fig. 1(b) shows a strong tempera-
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FIG. 1 (color online). Phonon binding and scattering vs elec-
tron energy "k (relative to conduction band edge "c), for a (25,0)
tube (d � 2:0 nm). (a) Binding energy, Eq. (3); (b-c) inverse
lifetime, Eq. (2); and (d) coherence length. The energy range
shown includes only the first band. In (a), (b), and (d), solid red
curves are for T � 300 K, dotted blue curves are for T � 10 K.
Note the large change in scale between low and high energy [ 
50 in (b) and (c) for low energy, and 250 in (d) for high
energy]. (c) Decomposition of e-ph scattering rate for 300 K:
total (red solid curve); �-point contributions (green dotted
curves); K-point contributions (blue dashed curves). �RBM is
radial breathing mode. The inset shows 2D graphene Brillouin
zone, with the integration areas shown by the circles of radius
equal to 0.1 of the �–M distance, which contribute virtually
100% of the total scattering; lines are only schematic.
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ture dependence at low energy, but at high energy it is 2
orders of magnitude larger and nearly independent of
temperature.

Virtually all of the scattering is by phonons correspond-
ing to small regions near the � and K points of the 2D
graphene Brillouin zone, and Fig. 1(c) shows the contribu-
tions of the respective bands to the scattering. At low
electron energy, the scattering is by acoustic and
breathing-mode phonons near the � point. The lowest-
energy phonon band gives negligible scattering and is not
shown. The second band is the acoustic phonon contribu-
tion which peaks at the van Hove singularity (bottom of the
conduction band). The third band is the radial breathing
mode [at 15 meV in (25,0) tube]. The next phonon mode
with a nonnegligible e-ph coupling is the longitudinal
acoustic phonon at K point which gives a weak scattering
peak labeled KLA.

By far the strongest coupling is to the LO phonons,
which give scattering roughly 2 orders of magnitude
stronger than the acoustic modes. The KLO mode corre-
sponds to interband scattering. It is the most important
mode at high field, both because it is strongest, and because
it can scatter electrons before they reach the energy of the
�LO mode.

In Fig. 1(d) we show the coherence length, defined as
Lk � vk�k, where vk is the band velocity. (We neglect
phonon renormalization of vk, which we calculate to be
only a few percent except near resonance with the optical
phonons KLO and �LO.) Note that the coherence length is
strongly energy dependent, with a broad maximum be-
tween the breathing mode and the optical phonons. It is
also quite sensitive to temperature, but even at room tem-
perature the coherence length can be well over a micron,
consistent with lengths inferred from experiment [6,7].
Charge carriers can be injected into nanotubes well above
the band edge [16], suggesting the possibility of ballistic or
even quantum-coherent devices over a range of length
scales. At higher energy, the carriers have a temperature
independent coherence length of around 20–40 nm, de-
pending on energy. This is consistent with the lengths
inferred from experiments for metallic tubes [5–7].

For applications such as diffusive device modeling, what
is needed is the total effect of scattering on the transport.
This is expressed as a mobility, which we calculate by
solving the steady-state multiband Boltzmann equation in
the presence of an electric field. The electron momentum
distribution function gk is

eE
�h
@gk
@k

��
X
q


Wk;k�qgk�1�gk�q��Wk�q;kgk�q

�1�gk��; (4)

where Wk;k�q is given in Eq. (2). Using the nonequilibrium
distribution function gk from Eq. (4), we calculate the drift
velocity v and the mobility �. To model nonuniform fields
or partially ballistic regimes, one can perform Monte Carlo
simulations using the full scattering matrix Wk;k�q.
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The drift velocity versus E field is shown in Fig. 2(a), for
a (25,0) tube. We show results at room temperature and at
low temperatures, in the limit of low carrier density. The
drift velocity saturates for fields E * 0:5 V=�m. At low
temperature we find negative differential resistance, i.e.,
drift velocity decreasing with increasing field. A similar
observation was reported previously [17], and it was specu-
lated to result from population of the second band at high
field. However, we find that the behavior persists even if we
restrict the basis set to include only the first band.

The inverse mobility shown in Fig. 2(b) can be fitted
rather well by a simple linear function of the E field, over a
wide range of applied E fields:

��1 � ��1
0 � v�1

s E; (5)

where �0 is the zero-field mobility and vs is the saturation
velocity. This is analogous to the linear dependence R �
R0 � V=I0 found for the dependence of the resistance R of
metallic nanotubes with applied voltage V [5], where I0 is a
saturation current. The saturation drift velocity vs � 5:0�
0:3 107 cm=s is nearly independent of the tube diameter
and temperature. The lack of strong dependence on diame-
ter is perhaps surprising, but this velocity is intriguingly
close to half of the maximum band velocity (the Fermi
velocity of graphene, 9:8 107 cm=s for the value of the
tight-binding matrix element t used here).

One of the greatest obstacles to fabricating reproducible
nanotube devices, is the difficulty of controlling (or even
knowing) the tube structure. This structure, the diameter
and chirality, is specified by two indices (m; n). In
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FIG. 2 (color online). (a) Drift velocity vs electric field at T �
300 K (red solid curve) and T � 10 K (black dotted curve) in
(25,0) tube. (b) Inverse mobility at T � 300 K vs E field;
straight lines show corresponding fits to Eq. (5), with vs � 5:0
107. Fitted values of �0 are �0 � 65 000 cm2=Vs for (25,0) tube
(red triangles); �0 � 35 500 cm2=Vs for (19,0) tube (green
squares); and �0 � 15 000 cm2=Vs for (13,0) tube (blue
circles).
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Fig. 3(a), we show how the zero-field mobility depends
on tube structure. We find that the dependence on diameter
and temperature can be described by a single simple em-
pirical relation:

�0�T; d� � �1
300 K

T

�
d

1 nm

�
(
; (6)

with �1 � 12 000 cm2=Vs and ( � 2:26. (The arbitrary
constants 300 K and 1 nm are simply to give �1 units of
mobility, independent of (.) The structure dependence is
not entirely captured by the diameter, nor is the 1=T
temperature dependence very precise, but overall the
agreement is quite good. Thus the dependence of mobility
on temperature, field strength, and even nanotube structure
can be captured to useful accuracy (�10%) with a simple
three-parameter description, Eqs. (5) and (6).

It might seem surprising that, while the scattering in
Fig. 1 is strongly energy dependent, the mobility in Fig. 2
varies smoothly with increasing field. This can be under-
stood by considering the distribution function gk [or equiv-
alently gE] obtained by solving the Boltzmann equation.
This is shown in Fig. 4. At very low field, the scattering is
entirely by acoustic phonons, giving a smooth distribution
in k. (The distribution in energy reflects the van Hove
singularity in the density of states.) With increasing field,
the electron has an increasing probability of reaching the
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FIG. 3 (color online). (a) Zero-field mobility vs tube diameter,
for tubes of many different chiralities. Temperatures are T �
450 K (red), T � 300 K (green), and T � 150 K (blue). Values
are based on linear extrapolation of ��1, Eq. (5), for E field
between 0.01 and 0:5 V=�m. Solid black curves are fitted to
Eq. (6). (b) Polaron binding energy (black squares) vs tube
diameter. Red circles show portion of binding energy from
optical phonons, and blue triangles show the much smaller
binding energy (shown 15) from acoustic phonons.
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FIG. 4 (color online). Steady-state distribution function for an
electron in a (25,0) tube at T � 300 K. E fields are E �
0:001 V=�m (black dotted curve), 0.01 (blue, next to black
dotted curve), 0.03 (light blue, middle), 0.1 (green, next to red
dashed curve), and 0.5 (red dashed curve) V=�m. Distributions
are shown with respect to (a) energy, and (b) wave vector along
tube axis. The top axis in (b) shows corresponding energy.
(Curves include Gaussian broadening of 2 meV.)
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optical phonon energy, at which point it is quickly scat-
tered. This leads to a step in the distribution near the
phonon energy (0.18 eV). With increasing field, the distri-
bution becomes flatter below this energy, until at high field
the distribution is almost flat in k, with a sharp step at the
phonon energy. From Eq. (5), we might expect the cross-
over from acoustic to optical phonons as the dominant
scattering mechanism to occur roughly at fields E�
vs=�0, corresponding to �0:08 V=�m in Fig. 4. This is
indeed roughly the field strength where intermediate be-
havior is seen in gk. Then from Eqs. (5) and (6), we can
anticipate that the crossover field varies with temperature
and tube size approximately as d�(T.

Finally we return to the polaronic energy shift.
Figure 3(b) shows the shift calculated with Eq. (3), as a
function of nanotube diameter. [This refers to the band-
edge states, "k � "c in Fig. 1(a)] We find binding energies
of around 35 meV, with only a weak dependence on
diameter over the typical range. This corresponds to a
band-gap renormalization of 70 meV due to electron-
phonon interactions, which is quite significant for large-
diameter tubes. This is more than an order of magnitude
larger than previous theoretical estimates [8,9]. The reason
for this discrepancy is explained in Fig. 3(b). Previous
calculations used a continuum model, which is equivalent
to including acoustic but not optical phonons. However,
almost all the binding is due to optical phonons, which
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couple far more effectively to the electrons. If we repeat
the calculations using only the first three phonon bands, we
obtain only a weak binding, in excellent agreement with
continuum calculations [9].

In conclusion, we find that in semiconducting carbon
nanotubes, the scattering of electrons or holes by phonons
is strongly energy dependent, both at low energy and
around the optical phonon energies. Nevertheless, the mo-
bility at low carrier densities can be described fairly accu-
rately by a simple formula, which should be useful in the
analysis of nanotube devices. The polaronic binding en-
ergy is much larger than expected, giving a significant
renormalization of the band gap.
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